


Final Rep6rt .

This report summarizes the work done under this contract In the context of the long-term research plan
described in [14. That paper, which was formulated under the auspices of this contract, outlines a plan
for the development of Rose, an applicative language based on a formal logic with powerful mechanical
proof assistance. We report here the progress to date on Rose, including our related efforts, following
fairly closely the outline of the Research Plan 1141. The first two sections of the Research Plan,
Introduction and Historical Foundations, provide additional background on our perspective; we omit
them from our outline here, however. Instead, we Include a brief summary of our study of related work in
the first section below.

We should mention that Rose will grow out of the existing computational logic of Boyer and Moore,
described in [6, 7, 8]. Indeed, we identify the current version of the Rose language and logic with the
current Boyer-Moore computational logic.

1 Study of Related Work
During the second quarter of 1985, we participated in a close up evaluation of three other major

verification systems (along with our own Gypsy system): GE's Affirm, SDC's Ina Jo/FDM, and SRI's
Revised Special/HDM. A week long visit was in fact made to each of these sites to study and use the
local verification system and to discuss future verification directions with the local developers. The results
of these visits are described in a sequence of Internal Notes [11, 12, 13). The entire effort's conclusions
appear in the The Kemmerer study report [191.

\\. Mechanizing Rose Logic
Our goal is to develop an economical technology for building proved computing systems with

mechanized formal logic. The unifying element of this technology is the functional language Rose which
we are designing. Rose embodies a powerful formal logic, and it also is an executable, functional
programming language. Thus, potentially, Rose provides a single, unified formalism that can express
both hardware and software systems and their specifications and requirements.

In the long term, with the development of parallel architectures and optimizing compilers that exploit
theorem proving, we believe that functional programming languages will be useful across a wide variety of
tasks. In the Intermediate term, we Intend that Rose be convenient for software applications such as
encryption boxes, flow modulators, message servers, etc. These are the applications areas in which
Gypsy commonly is used today. In the short term,"w-Jnnd that Rose be a convenient language in
which to specify and prove properties about von Neumann computing systems.

- The purpose of this phase of our work is to mechanize the Rose logic so that it can be used extensively
and economically In all of the previous kinds of activities. We will do this by incteasing the power of
current Boyer-Moore logic and its theorem prover, by defining the Rose language which embodies the
expanded logic and presents it In a more conventional and familiar notation, and by Implementing a
lie-cycle support system for Rose that supports the development and maintenance of large collections of
Rose functions, theorems, and proofs.

2.1 Rose Logic
Rose logic will ultimately be current Boyer-Moore logic extended to Include

1. quantification over finite domains,

2. a simulation of functions as first-class objects,
3. partial recursive functions.

Much research has already been carried out by Boyer and Moore [81 to support these modifications.

An experimental version of the theorem prover supporting quantification over finite domains and partial
functions exists, and It is being tested. The stop necessary to release it for wide-spread use are:



Final Report 2

1. convince ourselves and our peers that the modified logic is consistent,

2. convince ourselves and our peers that the modifications made to the released version of the
theorem prover are correct, and

3. write the manual for the new logic and theorem prover.

To these ends, a report on the extended Boyer-Moore logic and theorem prover has been
completed [8). A draft of a detailed user's manual has also been completed [5], describing not only the
basics of using the theorem prover but also containing many helpful tips for using it efficiently. It also
serves the role of being a reference guide for the logic as it currently exists.

2.2 Rose Language
As mentioned above, the current Rose logic is the existing Boyer-Moore logic. What we desire is. at

the least, a more conventional and familiar notation for Rose logic than the Lisp notation that presently is
used in Boyer-Moore logic.

But the Rose language will evolve from the current Boyer-Moore logic in other ways besides sugaring
the syntax. For example, we expect Rose to contain mutual recursion and (more generally) a relaxation
on the current Boyer-Moore restrictions on the order of definitions. We also anticipate the inclusion of
name space control (scopes), a simulation of functions as first-class objects, type-checking, and iterative
forms and partial functions such as those already existing in the experimental new version of the Boyer-
Moore logic and prover I8).

In order to aid the development of the Rose language, a formal semantic definition of the language
Micro Gypsy (discussed below) was developed in an experimental Rose syntax [15). This definition is the
basis for proving the correctness of the Micro Gypsy compiler. In addition, the type mechanism in the
Rose language was Investigated by considering the difficulty of expressing, in Rose, the algorithms for
checking the wefl-formedness of Micro Gypsy expressions [221.

2.3 Rose Support System
An experimental window-based interface to the Boyer-Moore prover was developed for Symbolics Lisp

Machines [2). Although we expect to redesign this interface, Its development provided valuable
experience.

2.4 Document Management
Preliminary investigation was made into the design of a Rose Development System. This system

would maintain consistency among related documents such as source, object, manuals, and so on. So
far, the most promising approach to document management that we have discovered Is the Neptune
hypertext system (9) being developed by Tektronix to support CAD (Computer Aided Design) and CASE
(Computer Aided Software Engineering) systems. More thoughts on this matter may be found In the
Research Plan [14).

2.5 Theory Management, Reusable Theories
, Some thought has been given to Implementing a hierarchical libray structure that allows one to merge

theories. This turns out to be a somewhat complicated issue In the setting of the current Boyer-Moore
system, but we believe such an Inprovement to be feasble. We have found It quite helpful to reuse
theories - for example, we have libats of arithmetic facts and fact bout subets that have been used
more than once - and a hierarchical lrary stucture would encourage more theory reuse.



Final Rep6rt 3

2.6 A "Smar" Blackboard
We Irnagine the user developing a system anid its proof i a medium as flexible as a blackboard but

which, unlike a blackboard, it active and is capable of manipulating the formulas inscribed on It as well as
following the arguments about them. We already mentioned the White Rose interface above, which is an
early step i this direction. In addition, an Interpreter has been developed which includes a trace and
break package as well as a usees guide and technical documentation [1, 33. (We are well aware that
executability is extremely Important in the development/acquisition of specifications.) Another feature of
this electronic blackboard should be a convenient means for queryfng the Boyer-Moore database. Some
recent additions made to the system for this purpose are documented in Chapter 12 of 15).

2.7 Building Trusted Systems
The mechanized logic whose development is described above wi be used in building a variety of

trusted systems. As the power of the Rose system evolve, proofs of both von Neumann and functional
computing systems will be constructed. Conversely, use of the system will provide imiportant feedback
into the developmnent of the Rose logic, language, and support system.

The applications of Rose that we foresee include the following:
" a formal def inkion of the Rose language,
" a formal definition for a subse of Ada,
" a formal definition of the Micro Gypsy language,
" a formal definition of the FM8501 assembly language,
" a formal definition of FMSO1' (a successo to FMSO1I)
* a proof of correctness of a Micro Gypsy compiler lo FM8501 (and FMISOI),
" a pro of correctness of a Micro Gypsy run-tim executive for FM8501'
* a proof of correctness of an FMO501 (and FM8501') asemler,
* a pro of correctness of a Rose compiler,
" a proof of correctness of a Rose proof checker.

The remaining sections below, report our progress oward povin correctness of von Neumann
systems and functional systems, respectively.

3 Proving von Neumann System
Work proceededtoward theo golL r~cn w ~d~~Ie. a systemt which has been

proved correc from the high-level language tough the operaa!ng syatem ad down lo t hardware
level. The paper (41 describes thi work I some detal. There wre Omre cowp~onenis to our veutcfl
verified system: the mnachin (ncludin the hardwar andl aseentler, the op erall system, and the
systems progrminiguage (Inicling a coplrand a purser. The hardware operating "osem
and compiler are Indepenidsn doctoral dise-t-i- research projectIs; the lMer tw of these are wofs i
progress. We discuss these all I tU beow, exceptin te assemler (~~c is wok I progres under
other supprt). Once the tre componet are completed, their blegralon ht a single sysem can

Figure I Is taken from the paper 141. and Illsrates our plan to aci ves versa v erillocat . A qills
thorough explanation of this lundamenta diagram may be found in 14t here Is a umey Consider for
example the bottom paaleogram aOfti fgure. There Is a notion of an ahW& M SO @Wae. L~e. a
st as seen at the level of t machine insricton eso. There Is also t nollse of a owool FMKGI
sate, i.e. a stale asno at level ofsw-1o0"n devise and cendo ls;ti onsit onf an



Final Repo 4

with an abstract state, s reprsented by the FMSOI box on the left side of the figure. The downward
arrow from that box represents the result of *completng* this abstrac state to an appropriate concrete
state. The left-to-right arrow from the FM8501 box repremnts the sabstract run* of a given number of
Instruction steps on that state, while the arrow below it represents the "concrete run' of a corresponding
(larger) number of Instructions on the corresponding concrete state. The upward arrow on the lower right
completes the diagram, which means roughly that N one takes the concrete state resulting from the
*concrete run' and abstracts from it a corresponding abstract state, then the result is the abstract state
resulting from the 0abstract run'.

3.1 Hardware
We have designed and proved a microprocessor, called the FM8501, a conventional von Neumann

engine of roughly the complexity of a PDP-1 1.

FM8501 is a complete, stand-alone microprocessor with a symmetrically organized Instruction set. Its
features Include:

" 16-bit general purpose processor

* word addressing yielding a 64K word (128K byte) memory size

" eight general purpose registers (one also being the program counter)

" 16-bi instructions

o register-register, register-memory, or memory-memory operation is allowed with aN
instructions

* two-address instruction format

" register, register Indirect, register Indirect with post-Increment, or register indirect with pro-
decrement addressing mode are Individuaty supported for both opervs for al Instructions

" general-purpose conditional move instruction

" Boolean, natural number, and Integer operational specification

" separate ALU for effective address generation

" memory naped I/O

" compact functional description

FM8501 is a micro-coded device. The microcode is used to control Instnction decoding and Internal
data movement. A separate ALU is used for effective address calculations, Incresin the performance of
the microprocessor.

AN registers may be used as Index registers or as software stWk pointers. Four sat bits - carry (C),
overflow V). negative (N), and zero (Z) - can be conditionally se by every Instruction. FL50I can
access 216 memory locations, each one word (16-bits) In size; FM5O0I can directly manipulate 128K
By"s of memory.

AN FMISS1 instructions are one word (16-bits) In size. Every Instruction specifies a source and a
destinaton location, each of which is either In a register or In memory. Instroctions for the FMSOI
specily two kinde of Information: the operation to be perfomed and the location of t operand- on which
the operation is, pedormed. Every Instruction has a source and a destinatlon. II two sources an required
the detinattion operand serves as the other source before being modifie (i.e., FM06OI has a two-
address archectWre). Because there are no special Instructions for 10. WpAWuxi devices ar
connected to FMSOW as memory devices (emory-mem d M).

We hwe poved the FMS5OI in the folowing sense. The specicaion of the maNne Is an Inruction
hterreter for b achi language. The erpreter Is dfined as a -I r funcilon with each



FkWa PRqon

FgWe 1: A Volaaly V~lh Syssom



Final ReW 6

recusion corresponding to a single state transition. This interpreter formally specifies the effect of
executing each posible instruction and may be thought of as a formal version of a programmers manual
for the device. The kiplementatlon of the FM85O1 is a gate graph containing about 1700 Boolean gates,
not counting those necessary to Implement registers, latches, memory, etc. We have mechanically
proved that the gate graph logically implements the Instruction interpreter.

3.2 The Separation Kernel
Implementing the Rose runtime support software in Micro Gypsy requires multi-tasking. We are

working on the proof of correctness of a small multi-tasking operating system designed for a simple von
Neumann computer. The verification of the operating system includes two kinds of properties:

* Task Isolation. We prove that the operating system, running on a single hardware processor,
simulates a fixed number of Isolated parallel tasks.

9 Correctness of operating system services. The operating system provides the following
services not provided by the bare target machine: message passing among tasks, and
character YO primitives to asynchronous devices.

The statement of the problem requires the definition of three machines: a task, an abstract operating
system, and the target machine on which the operating system will run.

A task is modeled as a single address space of the target machine, plus the shared resources
necessary to Implement communication with other tasks and devices. This model ensures that a task's
address space is isolated In the sense that no other task can perform a transition on it.

The abstract operating system specifies an operating system which manages a fixed number of tasks.
The functionality specified for this operating system includes a round-robin scheduler, an error trap
routine, I/0 Interrupt handlers, and supervisor service handlers for message passing and 10.

The target machine is a two-state machine (supervisor and user modes) with VO irterupts and with
memory protection provided by base/limit registers. The instruction set and addressing modes are
conventional, resembling a subset of the capabilities of a PDP-1 1. The operating system which is
ultimately verified is written in the machine code of this target machine.

The correctness proof of the operating system takes two steps. First, we prove that the abstract
operating system Implements a system of parallel processes. This correctness theorem states that any
task running under the abstract operating system behaves in a way Identical to the model of an isolated
task. Second, we prove that the target machine running Ohe machine code version of the operating
system satisfles the specification given by the abstract operating system. Composing these two results
gives us the theorem that the operating system Implements Isolated tasks.

The veiriication of the operating system is nearly complete. We have specified ll three layers (task,
abstract operating system, and target machine) in Rose (i.e. the BoyerMoore logic). The proof that the
abstract operating system Mblemet isolated tasks is complete. The pro tha the target machine
nining the machine ode operating sysem emMonut the atract operano syse Is nearly orplete.
We have iled a clock Intenpt harder, an err trap harder, and te sand and nceive supervisor
sefvi.c . The inpul and output services plus the 1/0 internpt handlers remrai to be verified. Verifying
these rouines should pose no significant new poblem.

3.3 "ime P.mgrunim"i Lawguag
our sytems programei language Is "Micro Gypsy. a mall subset of Gypsy cmparable to Small C

,hc is defined i nly In 123. 15. The complie for Micro Gypsy wil be ,willd in ose, providing a
veifed t in b betwe the high level laiue and 0e assely iuWe of ie ftarg
machine. The target language is an abtr asee lanw ee for the FMIO. O e microp ocessor
whih has alse been ien led In Rose.



Final Report 7

Micro Gypsy contains a large part of the sequential component of Gypsy, Including exception handling.
Principal features of Gypsy not Included (at present) in the subset are dynamic data structures,
concurrency, and data abstraction. Early experience with Micro Gypsy has convinced us that it contains
sufficient functionality to code many of the examples in the literature of full Gypsy.

The compiler for Micro Gypsy Is being written in Rose (i.e. the Boyer-Moore logic) and proven In the
Rose verification system (i.e. the Boyer-Moore theorem prover, with some modifications). Major
components of the compiler and its specification Include the following.

" A pro-processor translates from Gypsy syntax Into a LISP-like prefix syntax. In the process
it eliminates all expression evaluation in favor of calls to standard Micro Gypsy procedures.

" A recognizer checks the output of the pre-processor for acceptability to the translation
process. The recognizer will eventually be obviated when it is proven that the pre-processor
always generates acceptable input to the Micro Gypsy compiler.

" The Micro Gypsy Interpreter provides an operational semantics for Micro Gypsy. Its input
is a program In prefix form and a legal Micro Gypsy state; the result Is a state.

" The assembly language Interpreter provides an analogous operational semantics for the
target language.

* The translator takes as Input a legal Micro Gypsy program and produces a semantically
equivalent program In the assembly language.

" Several mapping functions translate between Micro Gypsy and assembly language states.
The correctness theorem for the compiler states that a Micro Gypsy program Interpreted on a legal Micro
Gypsy state Is semantically equivalent (under the mappings) to its translated version interpreted on the
corresponding assembly language state. The formal statement of the theorem and more discussion are
given In [41.

The following progress has been made under the current contract.
1. A complete definition of Micro Gypsy was formulated and documented in a draft

manual [23). Additionally, examples of the use of Micro Gypsy were devised to illustrate the
translation of Micro Gypsy syntax to the abstract prefix syntax [24, 251.

2. A preprocessor was written; details are given in the next subsection.

3. The two interpreters, recognizer, translator, and mapping functions were each written as
Rose functions for the complete subset.

4. The proo of correctness was begun.

The proof strategy which we evolved was to verify the compiler with a minimal subset of the language
and successively add features untIl we obtained the dered fuctionalty. We currently have a proof of a
very simple version of the system with only four instucions: NO-OP. SIGNAL, PROG2, and LOOP, and
which only allows referenom to simple variables. This has given us an enhance respect for the
complexity of the task which remains, but also a wealth of Insight into the strategies required to complete
it. We envision adding the instructions IF, BEGIN-WHEN, and PROC-CALL and adding data structures
ARRAY nd RECORD.

3.4 Micro Gypsy Parser
A parser for Micro Gypsy was written in Rose. In the context of the previous subsection, this s the

prapivess for translatin Micro Gypsy programs into a ump-lke syntax which is recognized by the
Wcogzer The parser converts a string of character, representing a micro-Gypsy program, into the

form-expected by the mcroGypsy compiler. There ar five components:
1. The reader converts a character string Into a sequence of tokens, e.g.. numbers, names,

and keywords.



Final Report 8

2. The tree constructor converts a sequence of tokens Into a tree representation of the
original Gypsy syntax. This component marks as errors tokens that do not fit into the Gypsy
syntax.

3. The prefix constructor converts the Gypsy syntax tree Into a prefix form that is similar to
compiler Input and is more convenient for subsequent processing.

4. The parser proper checks that the Gypsy tree represents a legitimate micro-Gypsy
program, marking errors such as type inconsistencies and undefined names. This
component also simplifies some Gypsy constructs. For example, it converts case
statements to If statements, removes expressions from actual parameter lists, and simplifies
structures that handle exception conditions.

5. The final component flattens the Gypsy namespace structure. It provides a single list of
procedure definitions, which are no longer divided into Gypsy scopes. This component also
constructs a type table, containing fully expanded definitions of all types In the program.

The Rose parser was modified to run in Lisp. The Lisp version was tested successfully on several
micro-Gypsy examples.

There was some progress toward proving that parser output Is acceptable to the recognizer for micro-
Gypsy compiler input. This work was centered on the acceptability of the type table. Specification
functions were written for the part of the parser relevant to type table construction. A paper proof that the
type table is acceptable to the recognizer, on the assumption that the parser satisfies its specification, is
near completion.

3.5 Computer Security
Computer security certification is a likely immediate beneficiary of our work on Micro Gypsy and Ava

because important progress that is now being made in using normal Gypsy software proofs methods to
prove computer security [26].

A non-Interference model of security has been devised and proved for the Honeywel SAT system
abstract model [26]. A non-interference model for the low water mark problem was specified and proved
correct both In Gypsy and Boyer-Moore [18]. Each version had advantages and disadvantages and we
expect to exploit our observations made In [181 In designing Rose.

4 Proving Functional Systems
Thus far, we have focused primarily on Rose as a logic and a specification language. However, Rose

Is executable and can, in principle, be used to Implement systems. We Imagine Rose eventually being
used as a functional programming language. The primary attraction is simplicity: both hardware and
software systems can be specified, implemented, and proved In a single formalism.

We are expecting the computing world to make great strides In finding efficient imvplementations of
functional languages. Several Interesting such developments have already been taking place In the last
few years, Including specialized hardware for graph reduction 1211, the G-machine Implementation on
conventional hardware [17,201, and compilation techniques such as the serial combinator approach [16].
The seeming potential for the exploitation of concurrency through functional languages Is well recognized.
and may cause a breakthrough in performance. However, even now, there are Irportant applications
(where efficiency is riot so much of an issue) for Rose as a programming language.

4.1 Functions as Systems
We have proved properft of cooperating sequentlal functions (a simple mutmplexorermuitiplexor

system), a described In the status report for the first quarter of 196. Some theorms were also proved
aboit a version of the 0618 flow modulor, whose Gypsy version Is desced In 110] During this



FnlRoo 9

COMMrai, however, these theorems were proved In Rose (i.e. with the Bayer-Moote theorem prover). The
Boyer-Moor version of the specification is more abstract than the Gypsy version, in that the input siream
is a Nst of -messages-. Theorems about this MFM were also stated that are much stronger than the
corresponding (proved) Gypsy statements.



Final Report 10

1. ICS Technical Reports since January 1985
TR# Date Author Titl (some ebbrevlated)

59 May 67 KaufmanrV Cornpating Gypsy and the
Young Boyer-Moore Logic for

Speciying Secure system

58 Apr 87 Shankar Proo-Checking Metamnathemnatics

57 Apr 87 Kim On Aitoratically Generating and
Using Examples in a Compiutational
Logic System

56 Apr 87 Kim Measure Guessing: On Experiment
with Hypothesis Generation from
Examples

55 Feb 87 Boyer/Moore Users Manual

54 Feb 87 Bevier, Hunt. Toward Veriied Execution
and Young Environmnents

53 Dec 86 Chou Methods and Exans in Mechanical
Geometry Theoremn Proving

52 Nov 86 Boyer/Moore The Addit ion Of Bound Quantiir and
Partial Functions to the Boyer4Moore
Logic and Theorem Prove

51 May 86 Cohen Proving Gypsy Programs

50 Jul 86 Chou Proving Gometry Theoremns Using Wu's
Method

49 Dec 85 Chou Proving and Discovering Geometry
Theorems Using Wu's Method

48 Feb 86 GoodVAkera Report on Gypsy 2.05
Smith

47 Dec 85 Hunt FM8501: A Verfe Mi-*crpoceso

46 Jan 85 Kinm EGS: ATransformnational Approach to
Automatic Example Generation

45 Jan 85 Shankar A Mechanical Proof of the ChufCh-Rosse
Theorem

44 Jan 85 Bayer/Moore Integrtin Decis810n Procedures
Into Heurlstic Theorem Provers



Final Reort

1I. Internal ICS Notes since January 1985
Note
Number Date Author Title (some abbreviated)

237 Feb 87 Akers/ An Introduction to the NOTHM Interpreter
L. Smith

236 Feb 87 Kaufmann A Mechanically-chocked Serni-lnteractive
Proo of Correctness of Gries's
Algorithm for Finding the Largest Size
of a Square True Subinatrix

235.234 Feb 87 Kaufmann A Primitive Users Manual for an
Interactive Version of the Boyer-Moore
Theorem-Prover (Parts I &£2)

233 DRAFT Sieberti Internal Representation of
Akers Macro-Gypsy

232 Nov 86 L. Smith THM Mode
231 Oct 86 Young A Oueue Package In iacro-Gypsy
230 Oct 86 Akers A Design for an NOTHM interpreter
229 Oct 86 Kaufmann 'NOTHM' Version of Boyer-Moore
228 Oct 86 L.Smith Backup
227 Sep 86 Good Foundations
226 Sep 86 Ars Gypsy 2.1 Predefied Function and

Staement Decrons
225 SeP 86 Ars Justification lot the New-OVE hiiplemnrtation
224 Sep 86 Akers Justillication for the Gypsy 2.05 Dialect
223 SeP 86 Mkers A Proposal for Revisin Gypsy Hold Spec

Requirements
222 Sep 86 Akers kntenal Representation of Exeable

Micr Gypsy
221 Aug 86 Good The Formal Definition of Micro Gypsy
220 Aug 86 Sovier The Correctness of a Small Operating System
219 Jul 86 Akers Discussions of OVE Alternation Qause
218 Jun 86 Young The Semantics, of Micro Gypsy
217 Jun 86 Young Hornees Algorithm i Micro Gypsy
216 Jun 86 Young A Recognizer for Micro Gypsy
215 May 86 Mkets The White Rose Window interface
214 May 86 Good DRAFT-In Stip~potof THM
213 Apr 86 Young Picafs
212 Apr 86 Youn The Low WAte Mark Problem Using Non-Interl.
211 Apr 86 Young The Factoia Example
210 Jan 86 Sevier/ On the WeilDeflnedwness of Gypsy Exprssions

Cohen
209 Jan 86 Akers Gypsy Data Abstraction
206 Jan 86 L.Sunlt Gypsy DWWsc
207 De 85 Good Rose Develoipmet System
206 Dec 85 Good The Rose Function Spae
205 Dec 85 Good 0" al rqNO nV Techniques
204 Oct 85 Good Lisp IRose
203 Oct895 Good Rose 84
202 Jan 86 B.Young Gypsy Paginaor
201 NOV85s LSmith Gypsy mode In Zmeac
200 Oct 85 MSmInih Repsonsiies to Gypsy CrItiques
199 Oct 85 draft Akers Gypsy 2.0 GVE limlementation

Variances: 1-OW-85



Final Reort 12

198 Sep 85 Akers The Automated GVE Testbed
197 Oct 85 draft Good Proving Computing Systems In Ada
196 Sep 85 Akers Bug Tracking Procedures
195 Sep 85 Akers Implementation Proposals for Abstract Equality
194 Sep 85 LSmith Gypsy Interface with TSV05 Magtape
193 Sep 85 Good/

M.Smith Software Verification in Gypsy
192 Sep 85 Good/

McHugh Information Flow Tool for Gypsy
191 Sep 85 Good.. Building Software Economically

with Mechanized Logic
190 Aug 85 Cohen New GVE File Directories
189 Aug 85 L.Smith Burning Gypsy programs into PROM
188 Sep 85 Good Notes on Revised SPECIAL and ENHANCED HDM
187 Jul 85 Bevier The Multics Maclisp Version of the GVE
186 Jun 85 TBD Young Security in an Abstract Setting
185 Oct 85 Good Proof of Ordered Search
184 Jun 85 Good Gypsy Ordered Search
183 Oct 85 Good Proof of Unear Search
182 Jun 85 Good Gypsy Linear Search
181 Sep 85 Good Proof of Object Array Theory
180 Jun 85 Good Gypsy Object Array Theory
179 Sep 85 Good Proof of Ordered Object Theory
178 Jun 85 Good Gypsy Ordered Object Theory
177 Jun 85 Good Proof of Two Channel Mover II
176 Jun 85 Good Gypsy Two Channel Mover II
175 Oct 85 Good Proof of Two Channel Mover 1
174 Jun 85 Good Gypsy Two Channel Mover I
173 Jun 85 Good Proof of Carrier Connection
172 Jun 85 Good Gypsy Carrier Connection
171 Jun 85 Akers Comparison of FORMAT directives
170 Sep 85 Good DRAFT Notes on FDM
170A Sep 85 Good Notes on FDM
169 Sep 85 Good Notes on Affirm
168 May 85 Good Gypsy 10 without Buffers
167 Apr 85 Good Micro Filter: Variation #4
166 Apr 85 Good Micro Filter: Variation #3
165 Apr 85 Good Micro Filter: Variation #2
164 Apr 85 Good Micro Filter Variation #1
163 Feb 85 Bevier Symbol Table Proofs
162 Feb 85 Bevier Saddle Back Search
161 Feb 85 draft Good.. KAIS FEU Issues
160 Feb 85 Good RSRE Crypto Controller
159 Jan 85 M.Smth Low Water Mark: Simple Version
158 Jan 85 M.Smlth Low Water Mark Using Abstract Data Type Logs



Final Report 1

Rferences

1. Robert L. Akers. A Design for an NOTHM Intepreter. Internal Note #=3. Institute for Computing
Science, The University of Texas at Austin.
2. Robert L. Akers & Lawrence M. Smith. The White Rose Window Interface. Internal Note 8215,
Institute for Computing Science. The University of Texas at Austin.
&. Robert L. Akers & Lawrence M. Smith. An Introduction to the NQTHM Interpreter, Irternal Note (to
appear). Institute for Computing Science, The Unrsity of Texas at Austin.
4. W.R. Bevier. WA. Hunt, W.D. Young. Toward Verified Execution Er- nrnents Proceedins of the
1987 Symposium on Security and Privacy, IEEE, 1067.

5.Robert S. Boyer and J Strother Moore. The Users Manual for A Computational Logic. ICSCA-
CMP-55, Institute for Computing Science, The University of Texa of Austin, March, 1967.
6. R. S. Boyer and J. S. Moore. A CuutonlLogic Academic Press, New York, 1979.
7. R. S. Boyer and J S. Moore. Metal unctions: Proving Them Correct wid Using Them Efficiently as
New Proof Procedures. In The Coffecooss Pobilem i Computer Science, R. S. Boyer ad J S. Moore.
Eds., Academic Press, London, 1961.
8. R.S. Boyer and J S. Moore. The Addition of Bounded Qwlcatln d Parlia Functions to the
Boyer-Moore Logic and Theorem Prover ICSCA-Ch1P-52. frothul for Conpute Science and
Computing Applications, The Universit of Texas at Austin. January, 1987.
9. Norman Deflate and Mayer Schwart. Neptune: a Hyperex System for CAD Appicadons. CR485-SO.
Computer Research Laboratory. Tektronix Laboratories. Tektroni, inc., Januay, 19K6
10. Donald 1. Good. Ann E. Siebert Lawrence M. Smith. Mesae Flow Mouior- Final Report.
ICSCA-CMP-34, Institute for Computing Science, The U.niversity of Tewo at Asin, Decentoer. 1962.
11. Donald 1. Good. Notes on Affim Internal No*#169. instiute for Cernpilft Science. The
University of Texas at Austin.
12. Donald 1. Good. Notes on FOM. Internal Note #170-A, ik*e for Ccwpilg Scioec The
University of Texas at Austin
13. Donald 1. Good. Notes on Revied SPECIAL ac ENHANCED HOM. ial Nol #1011 Inllke
for Computing Science. The Unierit of Toma at Aiim.

14. Donald 1. Good, Robert S. Boyer. J fother Mea . Toied sel s 0yallm *am M c? anize d
Logic. Institute for Computing Science, The Uhivo*l of Tm at Amsle .as low6
15. Donald 1. Good. The Formal Definktin of Mic G""e. bsmN Note #2M 1 11111,e for Comput
Science, The University of Texas at Aise.
16. P. Hudak and B. Goldberg. Serial Cowrintors 'Opim Waino at aem In Ow CON16mce
on Functional PrgA rr Langus aW Compu p AeWftee. NO. Fwve, lUed low;
Lecture Woes In Computr SdiNce 20 1,
Springer-Verlag, Berlin, 1965, pp. 382-*9.

17. Thomas Johnsson. *Efficlent Cormpilation of Lay Eveadon'11. Mt Aft ONs 9 t W" 10614),
58-69.
18. Matt Kaufmann, WUIMM D. Young. C m ek~lnP e setBrs p e lm w
and the Boyer-Moore Logic. Aueitd N88 I = cempiirleuu mwftieme
19. Richard Kemrer. Verification Aseewneet U~v inR ipeN in 5 VebMMe Wr*bhed.



Final Report 14

20. Simon L. Peyton-Jones. The Implementation of Functional Programming Languages. Prentice-Hall
International, London, 1987.

21. Mark Scheevel. NORMA: A Graph Reduction Processor. 1986 ACM Conference on Lisp and
Functional Programming, 1986.

22. William D. Young. A Recognizer for Micro Gypsy. Internal Note #216, Institute for Computing
Science, The University of Texas at Austin.

23. William D. Young. The Semantics of Micro Gypsy. Internal Note #218, Institute for Computing
Science, The University of Texas at Austin.

24. William D. Young. A Queue Package in Micro-Gypsy. Internal Note #231, Institute for Computing
Science, The University of Texas at Austin.

25. William D. Young. Homer's Algorithm in Micro Gypsy. Internal Note #217, Institute for Computing
Science, The University of Texas at Austin.

26. William D. Young, J. Thomas Haigh. Extending the Non-Interference Version of MLS for SAT.
Symposium on Security and Privacy, April, 1986.

JI


